skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Schaefer, David"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Network Analysis has traditionally been applied to analyzing interactions among learners in online learning platforms such as discussion boards. However, there are opportunities to bring Network Analysis to bear on networks representing learners' mental models of course material, rather than learner interactions. This paper describes the construction and analysis of collaborative educational networks based on concept maps created by undergraduates. Concept mapping activities were deployed throughout two separate quarters of a large General Education (GE) course about sustainability and technology at a large university on the West Coast of the United States. A variety of Network Analysis metrics are evaluated on their ability to predict an individual learner's understanding based on that learner's contributions to a network representing the collective understanding of all learners in the course. Several of the metrics significantly correlated with learner performance, especially those that compare an individual learner's conformity to the larger group's consensus. The novel network metrics based on collective networks of learner concept maps are shown to produce stronger and more reproducible correlations with learner performance than metrics traditionally used in the literature to evaluate concept maps. This paper thus demonstrates that Network Analysis in conjunction with collective networks of concept maps can provide insights into learners' conceptual understanding of course material. 
    more » « less
  2. Inland waters pose a unique challenge for water quality monitoring by remote sensing techniques due to their complicated spectral features and small-scale variability. At the same time, collecting the reference data needed to calibrate remote sensing data products is both time consuming and expensive. In this study, we present the further development of a robotic team composed of an uncrewed surface vessel (USV) providing in situ reference measurements and an unmanned aerial vehicle (UAV) equipped with a hyperspectral imager. Together, this team is able to address the limitations of existing approaches by enabling the simultaneous collection of hyperspectral imagery with precisely collocated in situ data. We showcase the capabilities of this team using data collected in a northern Texas pond across three days in 2020. Machine learning models for 13 variables are trained using the dataset of paired in situ measurements and coincident reflectance spectra. These models successfully estimate physical variables including temperature, conductivity, pH, and turbidity as well as the concentrations of blue–green algae, colored dissolved organic matter (CDOM), chlorophyll-a, crude oil, optical brighteners, and the ions Ca2+, Cl−, and Na+. We extend the training procedure to utilize conformal prediction to estimate 90% confidence intervals for the output of each trained model. Maps generated by applying the models to the collected images reveal small-scale spatial variability within the pond. This study highlights the value of combining real-time, in situ measurements together with hyperspectral imaging for the rapid characterization of water composition. 
    more » « less